When diffraction governs the stereodynamics of rotationally inelastic collisions

Mikhail Lemeshko

Fritz Haber Institute of the Max Planck Society, Berlin, Germany

Sandia National Laboratories
August 3, 2010
Outline

1 Why is stereodynamics important?
2 Two words about the model
3 Ar – NO collisions: model vs. experiment and exact computations
4 Other systems: fingerprints of diffraction
5 First results on Ne – NO\((A^2\Sigma)\) collisions
6 Conclusions and outlook
1 Why is stereodynamics important?

2 Two words about the model

3 Ar – NO collisions: model vs. experiment and exact computations

4 Other systems: fingerprints of diffraction

5 First results on Ne – NO($A^2\Sigma$) collisions

6 Conclusions and outlook
Why is stereodynamics important?

Usual scattering experiments furnish:
- integral cross sections (overall probability for collision to happen), and
- differential cross sections (probability of scattering into a particular angle)
Why is stereodynamics important?

Integral and differential cross sections miss important features.
Why is stereodynamics important?

Integral and differential cross sections miss important features

For instance, how will an NO molecule be rotating after colliding with an Ar atom?
Why is stereodynamics important?

Integral and differential cross sections miss important features

For instance, how will an NO molecule be rotating after colliding with an Ar atom?

within the collision plane...
Why is stereodynamics important?

Integral and differential cross sections miss important features

For instance, how will an NO molecule be rotating after colliding with an Ar atom?

...or perpendicular to the collision plane?
Why is stereodynamics important?

Integral and differential cross sections miss important features

For instance, how will an NO molecule be rotating after colliding with an Ar atom?

...or perpendicular to the collision plane?

The only way to obtain complete information about the potential is to measure the angular momentum disposal
We describe molecular rotation using two alignment moments, a^2_0 and a^2_{2+}.
We describe molecular rotation using two alignment moments, a_0^2 and a_{2+}^2.

$$a_0^2 = -\frac{1}{2} \ldots 1$$ describes the alignment of j' with respect to the initial relative velocity k.

...
We describe molecular rotation using two alignment moments, a_0^2 and a_{2+}^2:

$$a_0^2 = -\frac{1}{2} \ldots 1$$

describes the alignment of j' with respect to the initial relative velocity k.

$$a_0^2 = 1 \quad \rightarrow \quad j' \parallel k$$
Alignment moments

We describe molecular rotation using two alignment moments, a_{0}^{2} and a_{2+}^{2}

$$a_{0}^{2} = -\frac{1}{2} \ldots 1$$ describes the alignment of j' with respect to the initial relative velocity k

$$a_{0}^{2} = -\frac{1}{2} \rightarrow j' \perp k$$
We describe molecular rotation using two alignment moments, a_0^2 and a_{2+}^2.

$$a_{2+}^2 = -\frac{\sqrt{3}}{2} \ldots \frac{\sqrt{3}}{2}$$

describes the alignment of j' within the plane perpendicular to k.
Alignment moments

We describe molecular rotation using two alignment moments, a_{0}^2 and a_{2+}^2

$$a_{2+}^2 = -\frac{\sqrt{3}}{2} \ldots \frac{\sqrt{3}}{2}$$

describes the alignment of j' within the plane perpendicular to k

$$a_{2+}^2 = \frac{\sqrt{3}}{2} \rightarrow j' \perp k; \text{ within the collision plane}$$
Alignment moments

We describe molecular rotation using two alignment moments, a_{20}^2 and a_{22}^2.

\[a_{2+}^2 = -\frac{\sqrt{3}}{2} \ldots \frac{\sqrt{3}}{2} \] describes the alignment of j' within the plane perpendicular to k

\[a_{2+}^2 = -\frac{\sqrt{3}}{2} \rightarrow j' \perp k; \text{ perpendicular to the collision plane} \]
Outline

1. Why is stereodynamics important?
2. Two words about the model
3. Ar – NO collisions: model vs. experiment and exact computations
4. Other systems: fingerprints of diffraction
5. First results on Ne – NO($A^2\Sigma$) collisions
6. Conclusions and outlook
The Fraunhofer model of molecular collisions

1. **Sudden approximation**: the collision is much faster than molecular rotation. In energy terms it means that rotational level spacing is negligibly small with respect to the collision energy
1. **Sudden approximation**: the collision is much faster than molecular rotation. In energy terms it means that rotational level spacing is negligibly small with respect to the collision energy.

\[E_{\text{coll}} \]

\[J=0 \quad J=1 \quad J=2 \]
1. *Sudden approximation*: the collision is much faster than molecular rotation. In energy terms it means that rotational level spacing is negligibly small with respect to the collision energy.
1. **Sudden approximation**: the collision is much faster than molecular rotation. In energy terms it means that rotational level spacing is negligibly small with respect to the collision energy.

- There is no energy transfer in the collision; however, states with $J = 0, 1, 2\ldots$ correspond to different sets of internal coordinates ξ, which may change.
1. **Sudden approximation**: the collision is much faster than molecular rotation. In energy terms it means that rotational level spacing is negligibly small with respect to the collision energy.

- There is no energy transfer in the collision; however, states with $J = 0, 1, 2...$ correspond to different sets of internal coordinates ξ, which may change.

- The inelastic scattering amplitude can be expressed in terms of the elastic amplitude:

$$f_{i \rightarrow f}(\vartheta) = \langle f | f_{\text{el}}(\vartheta, \xi) | i \rangle$$
2. We consider the molecule to be a perfectly absorptive target with sharp boundaries, and replace the true elastic scattering amplitude $f_{el}(\vartheta)$ by the amplitude for \textit{Fraunhofer diffraction}.
2. We consider the molecule to be a perfectly absorptive target with sharp boundaries, and replace the true elastic scattering amplitude $f_{el}(\vartheta)$ by the amplitude for \textit{Fraunhofer diffraction}.

\[
\mathcal{F} \equiv \frac{a^2}{L \lambda} \ll 1
\]
2. We consider the molecule to be a perfectly absorptive target with sharp boundaries, and replace the true elastic scattering amplitude $f_{el}(\vartheta)$ by the amplitude for *Fraunhofer diffraction*

The Fresnel number:

$$\mathcal{F} \equiv \frac{a^2}{L\lambda} \ll 1$$
2. We consider the molecule to be a perfectly absorptive target with sharp boundaries, and replace the true elastic scattering amplitude $f_{el}(\vartheta)$ by the amplitude for *Fraunhofer diffraction*

The Fresnel number:

$$\mathcal{F} \equiv \frac{a^2}{L \lambda} \ll 1$$
2. We consider the molecule to be a perfectly absorptive target with sharp boundaries, and replace the true elastic scattering amplitude \(f_{el}(\vartheta) \) by the amplitude for Fraunhofer diffraction.

The Fresnel number:

\[
\mathcal{F} \equiv \frac{a^2}{L\lambda} \ll 1
\]
2. We consider the molecule to be a perfectly absorptive target with sharp boundaries, and replace the true elastic scattering amplitude $f_{el}(\vartheta)$ by the amplitude for *Fraunhofer diffraction*

The Fresnel number:

$$\mathcal{F} \equiv \frac{a^2}{L\lambda} \ll 1$$

3. The collision energy is high compared with any potential well

⇒ we consider only the “repulsive core” of the potential, neglecting the attractive part
The scattering amplitudes

\[f_{i \rightarrow f}(\vartheta) = \frac{ikR_0}{4\pi} \sqrt{\frac{2j + 1}{2j' + 1}} J_{|\Delta m|}(kR_0\vartheta) \sum_{\kappa \neq 0}^{\kappa + \Delta m \text{ even}} \Xi_{\kappa,\Delta m} F_{\kappa,\Delta m} C(j \kappa j'; m \Delta mm') \times C(j \kappa j'; \Omega_0 \Omega) \left[(-1)^{\kappa} + (-1)^{\Delta j} \right] \]
The scattering amplitudes

\[f_{i \rightarrow f}(\vartheta) = \frac{ikR_0}{4\pi} \sqrt{\frac{2j + 1}{2j' + 1}} J_{|\Delta m|}(kR_0 \vartheta) \sum_{\kappa \neq 0, \kappa + \Delta m \text{ even}} \Xi_{\kappa0} F_{\kappa, \Delta m} C(j \kappa j'; m\Delta mm') \times C(j \kappa j'; \Omega0\Omega) \left[(-1)^{\kappa} + (-1)^{\Delta j} \right] \]

No way to study quantum stereodynamics without the scattering amplitudes
The scattering amplitudes

\[f_{i \rightarrow f}(\vartheta) = \frac{ikR_0}{4\pi} \sqrt{\frac{2j + 1}{2j' + 1}} J_{|\Delta m|}(kR_0\vartheta) \sum_{\kappa \neq 0 \atop \kappa + \Delta m \text{ even}} \Xi_{\kappa 0} F_{\kappa, \Delta m} C(j\kappa j'; m\Delta mm') \times C(j\kappa j'; \Omega0\Omega) \left[(-1)^\kappa + (-1)^{\Delta j} \right] \]

No way to study quantum stereodynamics without the scattering amplitudes

Analytic expressions allow getting insight into the stereodynamics
1. Why is stereodynamics important?

2. Two words about the model

3. \(\text{Ar} – \text{NO} \) collisions: model vs. experiment and exact computations

4. Other systems: fingerprints of diffraction

5. First results on \(\text{Ne} – \text{NO}(A^2\Sigma) \) collisions

6. Conclusions and outlook
Results for Ar–NO ($X^2\Pi, j = \frac{1}{2} = \Omega \rightarrow j', \Omega = \frac{1}{2}$) collisions

Experiment and exact theory from Wade et al., Chem. Phys. 301, 261 (2004)
Results for Ar–NO ($X^2\Pi, j = \frac{1}{2} = \Omega \rightarrow j', \Omega = \frac{1}{2}$) collisions

Experiment and exact theory from Wade et al., Chem. Phys. 301, 261 (2004)
Results for Ar–NO (\(X^2\Pi, j = \frac{1}{2} = \Omega \rightarrow j', \Omega = \frac{1}{2}\)) collisions

Experiment and exact theory from Wade et al., Chem. Phys. 301, 261 (2004)
Results for Ar–NO \((X^2\Pi, j = \frac{1}{2} = \Omega \rightarrow j', \Omega = \frac{1}{2})\) collisions

Experiment and exact theory from Wade et al., Chem. Phys. 301, 261 (2004)
Results for Ar–NO \(\left(X^2\Pi, j = \frac{1}{2} = \Omega \rightarrow j', \Omega = \frac{1}{2} \right) \) collisions

Experiment and exact theory from Wade et al., Chem. Phys. 301, 261 (2004)

Note the form factor

Mikhail Lemeshko (FHI)

Diffraction rules stereodynamics

Sandia National Laboratories
Results for Ar–NO ($X^2\Pi, j = \frac{1}{2} = \Omega \rightarrow j', \Omega = \frac{1}{2}$) collisions

Experiment and exact theory from Wade et al., Chem. Phys. 301, 261 (2004)
Results for Ar–NO \((X^2\Pi, j = \frac{1}{2} = \Omega \rightarrow j', \Omega = \frac{1}{2}) \) collisions

Experiment and exact theory from Wade et al., Chem. Phys. 301, 261 (2004)

All the stereodynamics comes out of the diffraction by a two-dimensional egg!

![Graphs showing diffraction patterns for different j']
Results for Ar–NO ($X^2Π, j = \frac{1}{2} = Ω \rightarrow j', Ω = \frac{1}{2}$) collisions

Experiment and exact theory from Wade et al., Chem. Phys. 301, 261 (2004)

All the stereodynamics comes out of the diffraction by a two-dimensional egg!

Note the form factor
Results for Ar–NO \((X^2\Pi, j = \frac{1}{2} = \Omega \rightarrow j', \Omega = \frac{1}{2}) \) collisions

Experiment and exact theory from Wade et al., Chem. Phys. 301, 261 (2004)

These correspond to the following distribution of angular momenta:
Results for Ar–NO ($X^2\Pi, j = \frac{1}{2} = \Omega \rightarrow j', \Omega = \frac{1}{2}$) collisions

Experiment and exact theory from Wade et al., Chem. Phys. 301, 261 (2004)

These correspond to the following distribution of angular momenta:

Distribution of molecular axes:
Outline

1. Why is stereodynamics important?

2. Two words about the model

3. Ar – NO collisions: model vs. experiment and exact computations

4. Other systems: fingerprints of diffraction

5. First results on Ne – NO($A^2\Sigma$) collisions

6. Conclusions and outlook
Other systems: He – NO \((j = \frac{1}{2} = \Omega \rightarrow j', \Omega = \frac{1}{2})\) at 520 cm\(^{-1}\)

Different scattering channels for fixed collision energy:

![Diagram showing diffraction patterns for different collision energies and angular positions.](image-url)
Other systems: He – NO \((j = \frac{1}{2} = \Omega \rightarrow j', \Omega = \frac{1}{2})\) at 520 cm\(^{-1}\)

Different scattering channels for fixed collision energy:

![Diffraction patterns](image_url)
Other systems: He – NO ($j = \frac{1}{2} = \Omega \rightarrow j', \Omega = \frac{1}{2}$) at 520 cm$^{-1}$

Different scattering channels for fixed collision energy:

![Graph showing diffraction patterns for different scattering channels](image)

The diffraction patterns have the same fingerprints.
Other systems: He – NO \((j = \frac{1}{2} = \Omega \rightarrow j', \Omega = \frac{1}{2})\) at 520 cm\(^{-1}\)

Different scattering channels for fixed collision energy:
Other systems: He – NO \((j = \frac{1}{2} = \Omega \rightarrow j', \Omega = \frac{1}{2})\) at \(520 \text{ cm}^{-1}\)

Different scattering channels for fixed collision energy:

The diffraction patterns have the same fingerprints
Other systems: He – NO \((j = \frac{1}{2} = \Omega \rightarrow j' = \frac{9}{2}, \Omega = \frac{1}{2}) \)

Let’s try it at different collision energies:

![Graph showing the form factors for different collision energies. The graph compares Fraunhofer and exact results for different values of \(\vartheta \) and \(\frac{R_0}{\lambda} \).]
Other systems: He – NO \((j = \frac{1}{2} = \Omega \rightarrow j' = \frac{9}{2}, \Omega = \frac{1}{2})\)

Let’s try it at different collision energies:
Other systems: He – NO \((j = \frac{1}{2} = \Omega \rightarrow j' = \frac{9}{2}, \Omega = \frac{1}{2}) \)

Let’s try it at different collision energies:

![Graph showing diffraction patterns at different collision energies]
Other systems: He – NO ($j = \frac{1}{2} = \Omega \rightarrow j' = \frac{9}{2}, \Omega = \frac{1}{2}$)

Let’s try it at different collision energies:

The form factors are the same: these are the fingerprints of diffraction
Other systems: He – NO ($j = \frac{1}{2} = \Omega \rightarrow j' = \frac{9}{2}, \Omega = \frac{1}{2}$)

Let’s try it at different collision energies:

The form factors are the same: these are the fingerprints of diffraction

Diffraction: oscillations scale with the (size of the molecule)/(de Broglie wavelength)!
Other systems: He – NO \((j = \frac{1}{2} = \Omega \rightarrow j' = \frac{9}{2}, \Omega = \frac{1}{2})\)

Let’s try it at different collision energies:

The form factors are the same: these are the fingerprints of diffraction

Diffraction: oscillations scale with the (size of the molecule)/(de Broglie wavelength)!

Differences between scaled exact results are due to non-diffractive contributions
Other systems: He – NO, O$_2$, OH, and CaH at 520 cm$^{-1}$

Let’s try different molecules:

Moments are scaled with the (size of the molecule)/(de Broglie wavelength)
Other systems: He – NO, O$_2$, OH, and CaH at 520 cm$^{-1}$

Let’s try different molecules:

Moments are scaled with the (size of the molecule)/(de Broglie wavelength)
We see the same fingerprints again!
The fingerprints of diffraction

If you observe such a behaviour of the alignment moments:

\[a_{0}^{2}(\theta') \]

\[a_{2}^{2}(\theta') \]

you know immediately that it comes from diffraction.
The fingerprints of diffraction

Well, probably not always...
A bit of speculation:
alignment moments for He – NO ($j = \frac{1}{2} = \Omega \rightarrow j' = \frac{3}{2}, \Omega = \frac{1}{2}$) at 10 cm$^{-1}$
Outline

1. Why is stereodynamics important?
2. Two words about the model
3. Ar – NO collisions: model vs. experiment and exact computations
4. Other systems: fingerprints of diffraction
5. First results on Ne – NO($A^2\Sigma$) collisions
6. Conclusions and outlook
Ne – NO($A^2Σ, N = 0, J = 1/2 \rightarrow N'$) collisions at 470 cm$^{-1}$
Ne – NO($A^{2}\Sigma, N = 0, J = 1/2 \rightarrow N'$) collisions at 470 cm$^{-1}$
$\text{Ne} - \text{NO}(A^{2}\Sigma, N = 0, J = 1/2 \rightarrow N')$ collisions at 470 cm$^{-1}$

Breakdown of the sudden approximation?
Ne – NO($A^2\Sigma\, N = 0, \ J = 1/2 \rightarrow N'$) collisions at 1000 cm$^{-1}$

Let’s try a higher collision energy of 1000 cm$^{-1}$:
Ne – NO($A^2\Sigma$, $N = 0$, $J = 1/2 \rightarrow N'$) collisions at 470 cm$^{-1}$

Effect of a magnetic field: weak for alignment moments, but substantial for differential cross sections

Mikhail Lemeshko (FHI)
Outline

1. Why is stereodynamics important?

2. Two words about the model

3. Ar – NO collisions: model vs. experiment and exact computations

4. Other systems: fingerprints of diffraction

5. First results on Ne – NO($A^2\Sigma$) collisions

6. Conclusions and outlook
Conclusions and outlook

1. We developed an analytic model to study the stereodynamics of rotationally inelastic atom-diatom collisions.
We developed an analytic model to study the stereodynamics of rotationally inelastic atom-diatom collisions.

The model results for Ar – NO and He – NO are in excellent agreement with experiment and exact calculations, which attests to the predominant role of diffraction in shaping the stereodynamics of these systems.

Alignment moments for Ne – NO \((A_{2}^{\Sigma})\) are in good agreement with exact calculations for \(N^{'} = 1 \ldots 4\), while for higher rotational transfer the sudden approximation breaks down.

DCS’s for Ne – NO \((A_{2}^{\Sigma})\) are substantially affected by a magnetic field, while alignment moments are not.
Conclusions and outlook

1. We developed an analytic model to study the stereodynamics of rotationally inelastic atom-diatom collisions.

2. The model results for Ar – NO and He – NO are in excellent agreement with experiment and exact calculations, which attests to the predominant role of diffraction in shaping the stereodynamics of these systems.

3. We identified the fingerprints of diffraction, which can be used to interpret future experimental results.
Conclusions and outlook

1. We developed an analytic model to study the stereodynamics of rotationally inelastic atom-diatom collisions.

2. The model results for Ar – NO and He – NO are in an excellent agreement with experiment and exact calculations, which attests to predominant role of diffraction in shaping the stereodynamics of these systems.

3. We identified the fingerprints of diffraction, which can be used to interpret future experimental results.

4. Alignment moments for Ne – NO \((A^2\Sigma) \) are in good agreement with exact calculations for \(N' = 1 \ldots 4 \), while for higher rotational transfer the sudden approximation breaks down.
Conclusions and outlook

1. We developed an analytic model to study the stereodynamics of rotationally inelastic atom-diatom collisions.

2. The model results for Ar – NO and He – NO are in an excellent agreement with experiment and exact calculations, which attests to predominant role of diffraction in shaping the stereodynamics of these systems.

3. We identified the fingerprints of diffraction, which can be used to interpret future experimental results.

4. Alignment moments for Ne – NO ($A^2\Sigma$) are in good agreement with exact calculations for $N' = 1 \ldots 4$, while for higher rotational transfer the sudden approximation breaks down.

5. DCS’s for Ne – NO ($A^2\Sigma$) are substantially affected by a magnetic field, while alignment moments are not.
Acknowledgements

- Bretislav Friedrich (FHI)
- Pablo Jambrina (Madrid&Salamanca, Spain)
- Marcelo de Miranda (Leeds, UK)
- Jacek Kłos (Maryland)
- Dave Chandler and Jeff Kay (Sandia)
Thank you for your attention!